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Abstract
The theory of Hamiltonian and quasi-Hamiltonian systems with respect to
Nambu–Poisson structures is studied. It is proved that if a dynamical system
is endowed with certain properties related to the theory of symmetries then
it can be considered as a quasi-Hamiltonian (or Hamiltonian) system with
respect to an appropriate Nambu–Poisson structure. Several examples of this
construction are presented. These examples are related to integrability and also
to superintegrability.

PACS numbers: 45.20.Jj, 02.30.Ik, 05.45.Ac
Mathematics Subject Classification: 37J35, 70H06, 70H20

1. Introduction

The use of additional compatible structures plays a relevant role in the geometric approach
to dynamical systems by means of vector fields. This is the reason for the interest in the
search of such structures. For instance, Hojman proposed in a recent paper [1] a general
technique, valid for systems of both ordinary and partial differential equations, for finding
an admissible Hamiltonian structure for a given equation of motion using one infinitesimal
symmetry transformation and one constant of motion. Such a technique was extended in
subsequent papers [2, 3] for dealing with dynamical systems in field theory without using any
Lagrangian. For a recent update of Hojman’s approach, see [4] and references therein.

The geometric approach to (Hamiltonian and Lagrangian) mechanics started first with
the use of symplectic structures but then other more general formalisms, as presymplectic or
Poisson structures, were also considered. Nambu proposed in 1973 [5] a generalization of
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the classical Hamiltonian formalism for the study of a system defined on a three-dimensional
phase space with coordinates (x1, x2, x3) by introducing a new class of brackets for three
functions (f1, f2, f3) given by

{f1, f2, f3} = ∂(f1, f2, f3)

∂(x1, x2, x3)
,

where the right-hand side denotes the Jacobian determinant. This multibracket allows us to
express the time evolution of a function f by

df

dt
= {f, h1, h2}.

Here h1 and h2 are two ‘Hamiltonian’ or ‘Nambu’ functions that must necessarily be constants
of motion. Shortly after that, a certain number of authors studied [6–8] the relation between
Nambu and Hamiltonian mechanics.

Some years later Takhtajan [9] introduced the concept of Nambu–Poisson (or simply
Nambu) structure using an axiomatic formulation for the m-bracket operation, and this
new approach motivated a series of papers on the same subject (see, e.g., [10–15]). The
existence of an interesting relation between Nambu–Poisson manifolds and Leibniz algebroids
[16, 17] was also proved. Another generalization was the so-called generalized Poisson
brackets [18–20]. A comparison of both concepts was given in [21].

As in Poisson geometry, the existence of a Nambu–Poisson bracket is equivalent to
the existence of a skew-symmetric contravariant tensor N of order m satisfying a condition
equivalent to the fundamental identity. It has been proved [22–24] that a Nambu–Poisson
tensor N of order m � 3 is decomposable; as a consequence a Nambu–Poisson manifold is
locally foliated.

Our aim in this paper is to analyse the existence of Nambu–Poisson structures appropriate
for the study of a given dynamical system, �, and to present a technique for the construction
of such a structure when the dynamical system is endowed with certain properties related to
the theory of symmetries.

The organization of this paper is as follows: section 2 is devoted to introducing the
notation and basic definitions and to discussing some relevant properties of Nambu–Poisson
manifolds. The possibility of finding a Nambu–Poisson structure appropriate for making the
vector field � Hamiltonian (or quasi-Hamiltonian) is analysed in section 3. The idea is that
if � is endowed with certain properties then this construction can be carried out. Section 4
contains several illustrative examples and, finally, we make in section 5 some final comments.

2. Notation and basic definitions

Let M be a smooth n-dimensional manifold and C∞(M) denotes the algebra of differentiable
real-valued functions on M. A Nambu–Poisson structure of order m is given by an m-
dimensional multivector field, i.e. a C∞(M)-skew multilinear map

N :
∧

1(M)× m· · · ×
∧

1(M) → C∞(M)

which in local coordinates (x1, x2, . . . , xn) is given by

N = ni1···im(x)
∂

∂xi1

∧ ∂

∂xi2

· · · ∧ ∂

∂xim

,

where summation over repeated indices is understood, which allows us to define the bracket
of m functions by

{f1, f2, . . . , fm} = N(df1, df2, . . . , dfm),
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which in local coordinates (x1, . . . , xn) turns out to be

{f1, f2, . . . , fm} = ni1i2...im

∂f1

∂xi1

∂f2

∂xi2

· · · ∂fm

∂xim

,

in such a way that the following conditions are satisfied:

(1) Skew-symmetry: given m functions f1, . . . , fm,

{f1, f2, . . . , fm} = (−1)ε(σ ){fσ(1), fσ(2), . . . , fσ(m)},
where σ ∈ Sm (symmetric group of m elements) and ε(σ ) denotes its parity.

(2) Multilinearity: if k1 and k2 are real numbers,

{k1g1 + k2g2, f2, . . . , fm} = k1{g1, f2, . . . , fm} + k2{g2, f2, . . . , fm}
for any m + 1 functions g1, g2, f2, . . . , fm.

(3) Leibniz rule: for any m + 1 functions g1, g2, f2, . . . , fm,

{g1g2, f2, . . . , fm} = g1{g2, f2, . . . , fm} + {g1, f2, . . . , fm}g2.

(4) Generalized Jacobi identity, usually called Fundamental identity (shortened as FI):

{f1, . . . , fm−1, {gm, . . . , g2m−1}} = {{f1, . . . , fm−1, gm}, gm+1, . . . , g2m−1} + . . .

. . . + {gm, . . . , g2m−2, {f1, . . . , fm−1, g2m−1}},
for any 2m − 1 functions in M,f1, . . . , fm−1, gm, . . . , g2m−1.

Property 4 that is also known as the ‘Takhtajan identity’ is considered the appropriate
generalization of the Jacobi identity characterizing the standard Poisson bracket. As an
example for m = 3 and m = 4 it reduces to

{f1, f2, {g3, g4, g5}} = {{f1, f2, g3}, g4, g5} + {g3, {f1, f2, g4}, g5} + {g3, g4, {f1, f2, g5}},
and

{f1, f2, f3, {g4, g5, g6, g7}} = {{f1, f2, f3, g4}, g5, g6, g7} + {g4, {f1, f2, f3, g5}, g6, g7}
+ {g4, g5, {f1, f2, f3, g6}, g7} + {g4, g5, g6, {f1, f2, f3, g7}}.

The ‘Takhtajan identity’ can be presented in some other equivalent ways. The following
property [25, 26] gives an alternative form:

Proposition 1. A multi-derivation {·, ·, . . . , ·} : C∞(M)×C∞(M) · · ·×C∞(M) −→ C∞(M)

satisfies the FI if and only if

(1) The FI is true for the coordinate functions xi, i = 1, . . . , n.
(2) The following quadratic identities are satisfied

m∑
k=1

[{g1, f1, . . . , fm−2, fm+k−1}{g2, fm, . . . , f̂ m+k−1, . . . , f2m−1}

+ {g2, f1, . . . , fm−2, fm+k−1}{g1, fm, . . . , f̂ m+k−1, . . . , f2m−1}] = 0. (1)

for 2m arbitrary functions f1, . . . , fm−2, fm, . . . , f2m−1 and g1, g2.

The important point is that a set of m − 1 functions, f1, . . . , fm−1, defines a vector field
to be denoted by Xf1,...,fm−1 by contracting N with df1 ∧ · · · ∧ dfm−1, i.e. Xf1,...,fm−1g =
{f1, . . . , fm−1, g}. Such a vector field satisfies LXf1,...,fm−1

N = 0. Moreover, this property for
any m − 1 functions is equivalent to the FI Actually, LXf1 ,...,fm−1

N = 0 means that

Xf1,...,fm−1{g1, . . . , gm} = {Xf1,...,fm−1(g1), . . . , gm} + · · · + {g1, . . . , Xf1,...,fm−1(gm)}.
3
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More generally, for any k � m we can define a map

N# : �
(∧

k(T ∗M)
) → �

(∧
m−k(T M)

)
by contraction of N with each k-form in M.

In this formalism, a function f ∈ C∞(M) is a constant of the motion for the Nambu
dynamics represented by the Hamiltonian vector field Xf1,...,fm−1 if and only if

{f, f1, f2, . . . , fm−1} = 0.

Note also that, as a consequence of the FI, the Nambu–Poisson bracket of m constants of the
motion for a Hamiltonian vector field is a constant of motion too.

The vector field Xf1,...,fm−1 is said to be Nambu–Hamiltonian. Note that in such a case
the functions f1, . . . , fm−1 are constants of motion, and this means that only vector fields
admitting several constants of motion can be Nambu–Hamiltonian vector fields with respect
to a Nambu–Poisson structure.

A vector field Y in M for which there exists a function g such that gY is Nambu–
Hamiltonian is said to be quasi-Nambu–Hamiltonian. This means that there exist m − 1
functions f1, . . . , fm−1, such that gY = Xf1,...,fm−1 . The functions fi defining such a vector
field are also constants for the corresponding dynamics because of the skew-symmetry of N.

An interesting particular case is when m is equal to the dimension of the manifold M.
For instance, if Q is an n-dimensional manifold and M = T ∗Q is endowed with its natural
symplectic form ω0, then the multivector in M which is dual of the 2n-form ω0∧ n· · · ∧ω0

defines a Nambu–Poisson structure (in this case it is the dual of the Liouville structure).
Finally, the FI also implies that [13, 15]

[
Xf1,...,fm−1 , Xfm,...,f2m−2

] =
m−1∑
i=1

Xfm,...,fm+k−2,Xf1 ,...,fm−1 (fm+k−1),...,f2m−2 .

A remarkable property is that, when m is an even number, the FI holds if and only if
the Schouten bracket [N,N ] vanishes (see, e.g., [18, 20, 27]). Moreover we recall that the
Schouten bracket of two decomposable m-vectors is given by

[X1 ∧ · · · ∧ Xm, Y1 ∧ · · · ∧ Ym] =
m∑

i,j=1

(−1)i+j [Xi, Yj ] ∧ X1

· · · ∧ X̂i ∧ · · ·Xm ∧ Y1 ∧ · · · ∧ Ŷj ∧ · · · ∧ Ym, (2)

where X̂i means that the vector field Xi is omitted and the same for Ŷj .

3. Construction of a Nambu structure out of symmetries and constants of the motion

Up to now, we first assume the existence of a Nambu structure N on a manifold M and then
analyse if a certain vector field X on M is Nambu–Hamiltonian with respect to N. Now we
study the inverse problem. We start with a dynamical vector field � on a phase space M
and prove that if this dynamics is endowed with certain properties related to the theory of
symmetries, then it can be considered a (quasi-)Hamiltonian system with respect to a certain
Nambu structure.

The following theorem provides a method for the construction of the Nambu structure.

Theorem 1. Let � be a dynamical system on a manifold M. Suppose that

(1) � possesses two commuting infinitesimal symmetries represented by the vector fields X1

and X2.

4
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(2) There exist two constants of the motion functions for �, h1 and h2.
(3) The action of the bi-vector X1∧X2 on the exterior product dh1 ∧ dh2 does not vanish.

Then the 3-vector field N012 = �∧X1∧X2 is a Nambu–Poisson structure on M and the
dynamical system � is ‘quasi-Hamiltonian’ with respect to N012. Moreover, a new Nambu–
Poisson structure J on M, proportional to N012, can be defined so that � is the Hamiltonian
vector field of the functions h1 and h2 with respect to J .

Proof. The expression

N012 = �∧X1∧X2 (3)

defines a decomposable 3-vector field on M and the fact that X1 and X2 are commuting
infinitesimal symmetries of �,

[X1, �] = 0, [X2, �] = 0, (4)

implies that the distribution generated by X1, X2 and � is integrable. Takhtajan proved in [9]
that in such a case the multivector satisfies the FI Consequently, N012 defines a Nambu–Poisson
structure that moreover is invariant under �, because

L�(�∧X1∧X2) = �∧[�,X1]∧X2 + �∧X1∧[�,X2] = 0.

The Schouten bracket of N012 with itself vanishes, that is [N012, N012] = 0, and N012 is also a
generalized Poisson structure invariant under the dynamics.

Note that condition 1 could be modified to the case in which there exists an integrable
two-dimensional distribution invariant under �. If this integrable distribution is orientable
then the proof is still valid in this more general case. In fact, the existence of a 2-vector V on
M which is tangent to the distribution and such that V (x) �= 0 for all ∈ M leads to the Nambu
structure N = � ∧ V .

Denote by {xa; a = 1, 2, . . . , n} a local set of coordinates in the manifold M and suppose
the following coordinate expressions for the three vector fields:

� = f a(x)
∂

∂xa

, X1 = zb
1(x)

∂

∂xb

, X2 = zc
2(x)

∂

∂xc

.

Then N012 is given by

N012 = nabc

∂

∂xa

∧ ∂

∂xb

∧ ∂

∂xc

, nabc = det

∣∣∣∣∣∣∣
f a f b f c

za
1 zb

1 zc
1

za
2 zb

2 zc
2

∣∣∣∣∣∣∣ .
The action of N#

012 on the two differentials, dh1 and dh2, of the two assumed constants of
motion for � is

N#
012(dh1, dh2) = h12�,

where the function h12 is given by

h12 = X1(h1)X2(h2) − X1(h2)X2(h1).

Hence the dynamical vector field � is ‘quasi-Hamiltonian’ with respect to the Nambu–Poisson
structure N012. On the other hand, the vanishing of the Lie brackets [Xi, �] means that the
corresponding Lie derivatives, LXi

and L� , also commute

L[�,Xi ] = L�LXi
− LXi

L�,

and because of this the function h12 is a constant of the motion for �,

L�h12 = L�[LX1(h1)LX2(h2) − LX1(h2)LX2(h1)] = 0.

5
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Since we have h12 �= 0, we can therefore define a new structure J as follows,

J = 1

h12
N012,

so that J is also a Nambu–Poisson structure and � satisfies

� = J #(dh1, dh2).

Thus � is the Hamiltonian vector field, with respect to J , of the functions h1 and h2.
We close this section by pointing out the necessity of the third point for the proof of this

theorem, since if the 2-form constructed out of the two exterior differentials of the functions
hi would be zero when evaluated on the bi-vector field constructed out of the two symmetries,
the statement of the theorem would be invalid. For instance, suppose a system � that admits
separability and can be decoupled in two subsystems �α and �β depending on coordinates
{xα;α = 1, 2, . . . , nα} and {xβ;β = 1, 2, . . . , nβ}, nα + nβ = n, respectively. Then if X1 and
X2 are symmetries of the first subsystem �a (depending only of the xα) and h1 and h2 are
integrals of motion for the second subsystem �β (depending only of the xβ ) the function h12

will vanish in a trivial way.
�

4. Four examples

A Nambu–Hamiltonian dynamical system must necessarily possess several constants of the
motion. Conversely, the Nambu formalism seems appropriate for the study of those dynamical
systems known to possess integrals of motion. Now we consider four examples. The first one
is related to integrability and the other three to superintegrability.

4.1. Central potential

Let � be the following vector field,

� =
∑

yi

∂

∂xi

− kF (r)
∑

xi

∂

∂yi

, r2 =
∑

x2
i ,

defined on a 2n-dimensional phase space M with coordinates {xi, yi; i = 1, 2, . . . , n} and let
us denote by Jij and Xij , i �= j, i, j = 1, 2, . . . , n, the following functions and vector fields

Jij = xiyj − xjyi, Xij = xi

∂

∂xj

− xj

∂

∂xi

+ yi

∂

∂yj

− yj

∂

∂yi

.

It is clear that the Jij are constants of motion and the Xij are symmetries

�(Jij ) = 0 and [�,Xij ] = 0.

Let us define a 3-vector field N0ab as follows:

N0ab = � ∧ Xar ∧ Xbs, a �= b, r �= s.

Then the distribution generated by �,Xar and Xbs is completely integrable, N0ab satisfies
[N0ab, N0ab] = 0, and N0ab is a Nambu–Poisson structure. Then if we consider the two
functions h1 = Jab and h2 = Jrs as Hamiltonians we obtain

N#
0ab(dh1, dh2) = h12�,

where the function h12 is given by

h12 = J 2
as − J 2

br .

6
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Let us denote by J the new 3-vector field defined by

J = 1

h12
� ∧ Xar ∧ Xbs,

which is also a Nambu–Poisson structure. The function h12 is �-invariant, that is �(h12) = 0,
and consequently the dynamical vector field � is the Hamiltonian vector field, with respect to
J , of the functions h1 and h2:

� = J #(dh1, dh2).

4.2. An isotropic harmonic oscillator

Consider a six-dimensional phase space M with local coordinates (x1, x2, x3, y1, y2, y3) and
the dynamical vector field

� = X1 + X2 + X3, Xi = yi

∂

∂xi

− ω2xi

∂

∂yi

, i = 1, 2, 3.

It is clear that the vector fields Xi, i = 1, 2, 3, are symmetries of the dynamics (that
is, [Xi, �] = 0) and commute among themselves (that is, [Xi,Xj ] = 0). The distribution
generated by X1, X2 and X3 is completely integrable and the following 3-vector field N defined
by

N023 = � ∧ X2 ∧ X3

that in this case reduces to

N123 = X1 ∧ X2 ∧ X3

is a Nambu–Poisson structure.
On the other hand, the functions Jij = xiyj − xjyi are �-invariant (that is �(Jij ) = 0).

Hence, if we consider two of them as Hamiltonians, h1 = J31 and h2 = J12, we arrive at the
following result,

N#
123(dh1, dh2) = h12�,

where the function h12 is given by

h12 = F12F13, Fij = yiyj + ω2xixj .

Let us denote by J the new 3-vector field defined by

J = 1

h12
X1 ∧ X2 ∧ X3.

Each of the functions Fij is �-invariant, that is �(Fij ) = 0, and consequently the dynamical
vector field � is the Hamiltonian vector field, with respect to J , of the functions h1 and h2:

� = J #(dh1, dh2).

4.3. The Kepler problem

In a similar way, if we remove the points (0, 0, 0, y1, y2, y3) in the preceding phase space, we
can consider the following dynamical vector field:

� = y1
∂

∂x1
+ y2

∂

∂x2
+ y3

∂

∂x3
+

k

r3

(
x1

∂

∂y1
+ x2

∂

∂y2
+ x3

∂

∂y3

)
, r2 = x2

1 + x2
2 + x2

3 .

7
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Let us denote by Ji the functions Ji = xjyk − xkyj and by Xi and X123 the vector fields

Xi = xj

∂

∂xk

− xk

∂

∂xj

+ yj

∂

∂yk

− yk

∂

∂yj

X123 = J1X1 + J2X2 + J3X3,

where (i, j, k) = (1, 2, 3) or any circular permutation. Then Xi, i = 1, 2, 3, and X123 are
infinitesimal symmetries of � (that is, [Xi, �] = 0 and [X123, �] = 0) such that [Xi,X123] = 0.
We can particularize Xi = X2 and define a 3-vector field N023 by

N023 = � ∧ X2 ∧ X123

which is a Nambu–Poisson structure invariant under �.
Moreover, one can check that the functions

h1 = R2, h2 = R3, with Ri = εij lJj yl − k
xi

r

are �-invariant, i.e. �(R2) = �(R3) = 0. The Hamiltonian vector field defined by the
functions R2 and R3 with respect to the Nambu–Poisson tensor N023 is given by

N#
023(dR2, dR3) = h23�,

where the function h23 is given by

h23 = R1(J1R3 − R2J3),

and is �-invariant, i.e. �(h23) = 0.
The 3-vector field

J = 1

h23
� ∧ X2 ∧ X123

is then a Nambu–Poisson structure as well and the dynamical vector field � is the Hamiltonian
vector field, with respect to J , of the functions h2 and h3:

� = J #(dR2, dR2).

4.4. The Calogero–Moser system

Consider now a six-dimensional phase space M with coordinates (x1, x2, x3, y1, y2, y3) and
the dynamical system in M given by

� = y1
∂

∂x1
+ y2

∂

∂x2
+ y3

∂

∂x3

+ 2c0

[(
1

x3
21

− 1

x3
13

)
∂

∂y1
+

(
1

x3
32

− 1

x3
21

)
∂

∂y2
+

(
1

x3
13

− 1

x3
32

)
∂

∂y3

]
,

where use has been made of the notation xij = xi − xj .
Let N be the multivector

N023 = � ∧ X2 ∧ X3,

where X2 and X3 are given by

X2 = ∂

∂x1
+

∂

∂x2
+

∂

∂x3

X3 = (
y2

1 + V21 + V13
) ∂

∂x1
+

(
y2

2 + V32 + V21
) ∂

∂x2
+

(
y2

3 + V13 + V32
) ∂

∂x3

+ �
(
y2

1 + V21 + V13
) ∂

∂y1
+ �

(
y2

2 + V32 + V21
) ∂

∂y2
+ �

(
y2

3 + V13 + V32
) ∂

∂y3

and Vij denotes the function Vij = c0
/
x2

ij .

8
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Note that the vector fields X2 and X3 commute, that is [X2, X3] = 0, and the distribution
generated by �,X2 and X3 is completely integrable.

Moser proved [28] that the n-dimensional Calogero system can be presented as a Lax
equation and that a fundamental set of constants of the motion is given by

Ik = 1

k
tr Ak, A = A1 + ic0A2, k = 1, 2, . . . , n,

where A1 and A2 denote the diagonal and non-diagonal matrices

A1 = diagonal[y1, y2, . . . , yn], (A2)ij =
[
(1 − δij )

1

xij

]
.

Wojciechowski proved the super-integrability of this system [29] by showing the existence of
an additional family of integrals (see also [30–33]). If we make use of the matrix Q defined
by

Q = diagonal[x1, x2, . . . , xn],

then the additional constants of the motion can be given as the traces of products of the matrices
Q and A [31]. In the particular case we are considering, if we denote by Lij the functions
Lij = xiyj − xjyi , the following two functions,

h2 = [tr(QA)]I1 − [tr(Q)](2I2)

= L21(y2 − y1) + L32(y3 − y2) + L13(y1 − y3) + terms of lower order

h3 = [tr(QA2)]I1 − [tr(Q)](3I3)

= L21
(
y2

2 − y2
1

)
+ L32

(
y2

3 − y2
2

)
+ L13

(
y2

1 − y2
3

)
+ terms of lower order

are �-invariant, i.e. �(h2) = �(h3) = 0. The action of N023 on the 1-forms dh2 and dh3 is

N#
023(dh2, dh3) = h23�,

where the function h23 is given by

h23 = (y2 − y1)
2(y3 − y2)

2(y1 − y3)
2(y1 + y2 + y3) + terms of lower order.

Let us denote by J the new 3-vector field defined by

J = 1

h23
� ∧ X2 ∧ X3.

The function h23 is �-invariant, that is �(h23) = 0, the 3-vector field J is also a Nambu–
Poisson structure and the dynamical vector field � is the Hamiltonian vector field, with respect
to J , of the functions h2 and h3:

� = J #(dh2, dh3).

5. Conclusions and outlook

Recent results have shown the possibility of enlarging the idea of Hamiltonian system which
becomes a much more general concept and includes, in addition to the classical one, some other
more general cases. A given dynamical system previously considered as a non-Hamiltonian
one can however be seen, if certain properties are satisfied, as Hamiltonian but with respect
to either an alternative (noncanonical) symplectic structure or even a more general (in some
cases degenerate) Poisson structure. Moreover, a system can even be bi-Hamiltonian with
respect to two rather different geometric structures.

9
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This paper must be considered as part of a programme devoted to studying nonstandard
construction of Hamiltonian structures. We assume as a starting point that the dynamical
system enjoys certain symmetry properties. If the system to be studied is described by a
differential equation, in geometric terms a vector field �, the relevant symmetries are Lie
symmetries and in the geometric approach the symmetry properties are written in terms of
Lie derivatives and Lie brackets. We have analysed here a technique for the construction
of Nambu–Poisson structures compatible with � and we have related these structures to the
theory of quasi-Hamiltonian and Hamiltonian systems, in the framework of Nambu systems,
and we have illustrated the usefulness of such a construction with several interesting examples.
It is to be remarked that these structures are (in many cases) highly degenerated and this
fact suggests the existence of several related questions deserving a deeper study. Another
interesting question is the study of the superintegrable systems using the formalism of the
Nambu mechanics (see, e.g., [34–36]) that we have already considered in three particular cases
(oscillator, Kepler and Calogero–Moser). A maximally superintegrable system has 2n − 1
integrals Ik, k = 1, . . . , 2n − 1 (including the Hamiltonian itself) that can be considered as
new Hamiltonian functions in a Nambu formalism. The relation of superintegrability with the
existence of Nambu structures, as well the relation with the existence of multi-Hamiltonian
structures (in this case � is Hamiltonian with respect to different symplectic structures [37]),
is also an interesting matter to be studied.
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